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The general linear group GL(n,R ) is decomposed into a Markov-type Lie group and an abelian
scale group. The Markov-type Lie group basis is shown to generate all singly stochastic matrices
which are continuously connected to the identity when non-negative parameters are used. A basis
is found which shows that it in turn contains a Lie subgroup which corresponds to doubly
stochastic matrices, which basis, over the complex field, is shown to give the symmetric group for
certain discrete values of the complex parameters. The basis of the Markov algebra is shown to
give the negative of the corresponding M-matrices with property “C” (for non-negative
combinations). These stochastic Lie groups are shown to be isomorphic to the affine group and the
general linear group in one less dimension. The basis generates transformations with a natural

interpretation for physical applications.

I. INTRODUCTION

There is extensive literature'™ on the general linear
group in n dimensions over the real (or complex) field,
GL{n,R ), which explores various subgroup chains and their
representations. Usually these decompositions begin by re-
moving the Lie algebra generator 7, leaving the nonsingular
unimodular group SL{n,R }. Further restrictions requiring

the invariance of some bilinear form leads to subsequent de- -

composition and in particular the determination of all sim-
ple Lie algebras. This paper will explore an alternative de-
composition of GL{n,R ) requiring the invariance of a linear
form and resulting in a solvable (not semisimple} Lie group
chain with Markov-type Lie groups and their associated Lie
algebras down to the symmetric group. Butler and King*
have extensively explored the symmetric group as a sub-

group of the general linear group and have introduced two -

ideas which we explore more fully: (1) the invariance of a
linear form in GL{n,R ) and (2} the concept of the symmetric
group S, as a subgroup of GL(n,R ).

Requiring the invariance of a linear form

S

is closely related to singly {and doubly) stochastic processes

- which leave Zx; invariant and x; >0. First studied by Mar-

kov® in 1907, a singly (row) stochastic or Markov process is a
linear transformation M, >0 with

Z (1.1)
which can be thought of as transformmg a vector of probabi-

lities {or occupation numbers) x, >0 into a new set x; = M;x;
and is also doubly stochastic if

M, =1. _ (1.2)
J

Markov processes only form a semigroup since, in general,
they do not process an inverse.®

In Sec. IT we will study the decomposition of GL(2 R}
into a Markov-type Lie group and an abelian scale group.
Specifically it will be shown that all Markov processes con-
tinuously connected to the identity are all generated by a
certain basis for its Lie algebra with non-negative linear
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combinations. In Sec. III we will extend these ideas to n
dimensions and discuss a connection to S, illustrating that
the permutations are Markov processes which can be
reached from the identity with the same Lie algebra over the
complex field.

In Sec. IV we briefly discuss the invariance of indefinite
linear forms Zx; — 3y;. Sectlon V is a general discussion of
properties of the Markov Lie group. In particular it is shown
that all analytic functions of the basis are linear and thus no
Casimir operators exist. In Sec. VI a basis for a doubly sto-
chastic Lie algebra is obtained and related to the symmetric
group in Sec. VII. A close connection between the Markov
Lie algebra and the M-matrices with property “C” is estab-
lished in Sec. VIII with general conclusions following in Sec.
IX.

1. NOTATION AND DEFINITION OF M(n,A) IN TWO
DIMENSIONS

We define the “Markov” Lie group M (n,R } to be the
subgroup of GL(n,R ) which preserves

2%
where x; are the vector components / = 1---n acted upon by
the n X n representation of GL{n,R ). We define the vectors
1| and |1) to be row and column vectors, respectively, with
all components equal to 1. It follows that {1|M |x} = (1|x}
is equivalent to '

SM, =1, | (2.1)

for all j. This is equivalent to the preservation of a linear
rather than a bilinear form. The subset consisting of all
M; >0 would not be useful unless the M, are smoothly con-
nected in the group space and have a useful form as we now
show.

The infinitesimal transformation which takes a positive

fraction 0<e<1 of a component and adds it to the other

component will preserve the sum and will always be positive
when acting upon non-negative components. It also has the
natural interpretation of a transition probability for atime €.
It can be written in two dimensions as
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transferring the fraction ex, to x, and ex; to x,, respectlvely
Defining M (2,R ) in terms of the basis :

or

(2.2)

0 1
o3 )
' 0 -1
and
-1 0 '
L= ( ) 2.3
1 0 (2.3)
one verifies that
1 1—e™ %
eAL 12 — ( )
0 e %
and . ’
n e * 0)
L _
and that (1]|e*t " = (1]e** " = (1] as required (4 real).
(2.5)
Onealsoverifiesthat [L '2,L ") = 4 L !> — L?!, giving

the structure constants. Closure of the group can be seen
from closure of the L 12 and L 2! commutation rules or from

" . sequences of infinitesimal transformations which individu-
ally and thus collectively preserve (1|x). Thus in two dimen-

sions the most general form of M (2,R ) is

et = ghal U A (2.6)

with the group inverse e and group unit with 4; =0
GL(n,R ) itself has the additional basis elements

1 0
1 _
L (0 0)

and

0,0)
22
L _(o 1/

no combination of which preserves (1]x). The Lie group
M (2,R )thussatisfies the requirement of preserving the linear
form (1|x), but as A ranges over the reals there is an unphysi-
cal region when either 4, ,; < 0, which will not give a Markov
matrix, as well as a physical region with both 2, , >0, which
always gives an acceptable Markov matrix. Like GL(n,R ),
M (n,R ) is noncompact. The limit points at A = oo give the

0
l) with A,, and

—A-L

. . 1 1 0
singular transformations 0 o and 1

A,y, respectively.

lll. GENERALIZATION TO n DIMENSIONS

These results are easily generalized to n dimensions
where we define

L;ZIE‘Srk‘Sl - jk6j1 (3.1)
for i=4j to be'the k! element of the L Y linear operator. Simi-
larly (L") =58, The (n* — n)LY matrices and the (n) L"
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matrices form a basis for the Lie algebra which generates
GL(n,R). This can be seen by forming the n* combinations
which possess a 1 at only one position in the matrix with
zeros elsewhere. We define M (n,R ) arid 4 (n,R ) to be the ma-
trices generated by the LY and the L”, respectively. Thus
GL(n,R) =4 (n, R oM (n,R) for their respective Lie
algebras. _

That the L generate an abelian subgroup of order

:n,A (n,R ), of GL(n,R ) follows immediately from the general

form
e’{ll

(3.2)
e

which scales the ith coordinate by ¢**. It is closed, noncom-
pact, has the inverse
e~ Ml (3 3)
and a unit defined by A, =0. A umrnodular subalgebra is
obtained by redefining the basis as
1 1
I= 1 | H-= -1 |
1 0
H,= 1 | H, = (3.4)
-2

with H, as a diagonal traceless basis with i = 2,3,...,n.

The LY (i) in three dimensions take the form

0 . 0 O 0
_.( 0 L_23= 0 O 19
o) 0 0 -1
— 0 0 -1 0 O :
( 0 0 0} L*=| 1 0 0) (3.5
1 0. 0 0 0 o
0 0 O 1
L3= 0 —1 0 L2=|0 0 0 |
0 1 0 0 0 -1

which follows from writing the infinitesimal transformation
which subtracts ex; from the jth component and adds ex; to
the ith component. Thus these infinitesimal transformations
preserve (1|x) individually and collectively and thus any
group element
Pl

compounded from sequences of infinitesimal transforma-
tions also preserves (1|x). Conversely all linear transforma-
tions in GL(n,R ) which preserve (1|x) are included in the
basis since (1|(1 + Ze,LY) = (1] implies that Ze; LY =
over a column and the n-— 1 different linear comblnatlons
using LY for a fixed j spans all such possible combinations.
Consequently M (n,R) contains all those and only those
transformations in GL(n,R ) which preserve (1|x). Further-
more it is both necessary and sufficient that A, >0 for all i

and j in order to guarantee that any vector with all non-

negative components is transformed into a vector with non-

-negative components. This can be seen by looking at the
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most general infinitesimal transformation which is seen to be
non-negative and thus all products of these are also. Thus for
real 4, all Markov transformations in GL(#,R ) continuous-
ly connected to the identity are those elements in M (n,R)
formed with 4,,>0. The closure of M (#,R ) can be shown
from the closure of the commutators of the generating Lie
algebra

ZZ(L mL

which demonstrates that the commutator must be a combi-
nation of matrices with a zero row sum for each column.
Thus the commutator is a linear combination of elements of
the algebra. Also the product of two elements of M (n,R)
(with unit row sums) is

z ZMUM]k = z e =1 ‘ (3.7)

and thus is a member of M (n,R). The unit operator is pro-
duced withA;; = O and theinverse with — A,;. Thus M (n,R )
is a Lie group with LY (i#j) forming the basis of its Lie alge-
bra. (Antisymmetry and the Jacobi identity follow automati-
cally from a matrix definition.)

Although we found all Markov matrices in GL{(n,R )
with real 4, one can ask if there are acceptable real Markov
matrices arising from complex 4. It is easy to verify that
none are in the neighborhood of the identity. However con-
sider :

1 (1 +e * 1-— e‘“)

AR (3.8)

2\l —e=% 1 4e= 2/
- for imaginary A, which give real matrices. One can obtain
e~ %= —1lwith —24 = tingror
A =ngn/2, (3.9)
where n, is an odd integer. This gives

= ((1) (1)), forng=1

which is a permutation (transposition) of the two variables.
Thus using these discrete imaginary values for A with
(L¥ + /) one obtains the transpositions between any two
pairs of variables and, by multiplication of these, any permu-
tation. Thus the permutation (symmetric) group is contained
in M (n,C) for certain discrete complex values of the group
parameters (that a transposition is continuously connected
to the identity only with complex parameters, is easily prov-
en by diagonalizing the transposition matrix).

IV. TRANSFORMATIONS PRESERVING 3x; — 3

Beginning with an example in two dimensions, we can
ask for transformations in GL(n,R ) which preserve x — y.
The above results on the Markov matrices suggest infinitesi-
mal transformations which add or subtract a fraction of ei-
ther coordinate to the other. Thus we define

L—12=(g i)=L12+2L22’

(4.1)

L—2l=(; g)___L21_+_2L11’
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—3L2LIm) =0, (3.6)

which give

e 1 —14et? '
= (o e+t ) 2
+A 0
eu__n=( e )’
—14+et* 1 *

- respectively. In n dimensions these matrices give the correct

prescription for the connection between the positive definite
and negative definite subspaces. The invariant form can be
written as (1|7|x) where 7 is a metric which carries the sign
for the negative definite portions of the space. We will refer
to these transformations as indefinite Markov transforma-
tions M (r + s,R ), where r and s are the dimensions of the
positive definite and negative definite subspaces. The
M (r + s,R ) transformations also form a Lie group and give
physically acceptable vectors (x;>0) when any element
A; >0 acts upon a physically acceptable vector.

V. GENERAL PROPERTIES OF M(n,RA)

Geometrically, M (n,R ) can be viewed as giving all non-
singular linear transformations on the hyperplane perpen-
dicular to the vector (1| =(1,1,1,...,1) since {1|M = (1| or
equivalently since Zx; = const is the equation for the hyper-
plane and invariant. For non-negative A, e*L maps the
positive quadrant into itself. In fact, from an arbitrary point
x,; >0 any other point x; >0 can be reached with M (n,R). A
partlcular/I determines the fraction of the jth sector which
is added to the ith sector. If y; are defined by y? = x; then
M (n,R )maps the sphere 2y = constinto itselffor4; >0and
thus behaves like a nonlinear representation of the rotation
group but without an inverse. Likewise in two dimensions,
M (1 + 1,R )preservesys — y* and thusbehaveslikea nonlin-
ear representation of the Lorentz group. The invariant hy-
perplane of M (r + s,R ) is

z x; — ris Xx; = const. (5.1)

=1, i=r+1
All of the physical portion of the space can be covered with
M (r + s,R ) from the initial state with x™** =¢, x,,; =0,

The group M (n,R )is not unimodular (determinant # 1)
since the basis of its algebra, LY, is not traceless. Conse-
quently M (n,R ) is not contained in SL(n,C). By evaluating
the Killing form, g; = ¢, C ; in two dimensions one obtzins
1 1
1
Since a Lie algebra is semisimple if and only if g#0,
it follows that M (2,R ) is not semisimple. Defining L = L *2

— L?', one can show [L,L '*] =L =[L,L?'] and thus L
forms an invariant subalgebra or ideal. Consequently Sisnot
simple. M (n,R )isalsononcompact since the parameter space
is unbounded.

Generally one can prove that M (n,R ) is isomorphic to
the affine group in n — 1 dimensions (consisting of the gen-
eral linear group and translations). This follows from the
resultabovethat M (n,R ) consists of linear transformationsin

=0. (5.2)

g=lgul|=

* GL(n,R ) which are restricted to transformations in the hy-

perplane perpendicular to [1), which is a space of dimension
{(n — 1). The actual isomorphism can be implemented by a
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-coordinate transformation, R, which rotates the x, axis into
the vector |1) after which all of the n* — n linear transforma-
tions which were previously in the hyperplane now become
. linear transformations on the subspace x,x,:-x, _, leaving
the x,, axisinvariant. The transformed M (n,R ) matricesthen
take the customary form for the affine group:

(GL(n; LR) T(nl— 1))_

Thus all properties and representations of M (n,R ) are those
of the affine group in (n — 1) dimensions.

For semisimple Lie groups, the irreducible representa-
tions are classified by the spectra of Casimir operators’

I —Caﬂlczi;az... CzlﬁnLalLaz."La;’ (5.3)

which commute with all the elements of the algebra. Nor-
mally 7, is defined only for semisimple algebras but an inter-
esting nonexistence proofis possible for M (n,R ) forrepresen-
tations of the form (3.1): For two elements L and L?, in a
representation of arbitrary order, we have -

Y SLGL Jk_ZZL“Lb =0, (5.4)
T J
showing that the product of two matrices with
SL;=0 (5.5)

is again a matrix of this type. But since the LY are a complete
basis of all such matrices it follows that any product is ex-
pressible as a linear combination:

LL™ =34, L™, (5.6)

Consequently any analytic function of the LY is expressible -

as a linear combination of the L? and thus no operator like
the Casimir operators exist for M (n,R ) for representations of
the form (3.1). The generality of this proof rests upon the fact
that the L generate an algebra of arbitrary order ». In fact the
general group element :

M=e"Y=1+ AL+ (172)A-L* + (5.7)
must therefore be repressibleas M = 1 + a;(4 LY wherethe
a, are functions of the A; and must all satisfy 0<a; <1.

It would be important to have a useful expression for
the functions a;(4 ) as well as for the inverse functions be-
cause the g, (4 ) give the detailed connection between any
particular Markov transformation and the element of the
Lie algebra which generates it. In this paper we have only
established existence and general propertles of this connec-
tion.

VI. THE DOUBLY STOCHASTIC SUBGROUP

In certain applications of Markov or stochastic pro-
cesses an additional requirement, M |1) = 1, is imposed (in
addition to (1|M = (1|). These transformations are termed
doubly stochastic and have both unit row and unit column
sums. We denote the collection of real nonsingular doubly
stochastic transformations on an n-dimensional space as
M?P (n,R). By considering the infinitesimal transformations

M? =1+¢,L™, 6.1)
it follows that it is necessary and sufficient that
L o= (6.2)
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It can be seen that this imposes n — 1 independent condi- '.
tions on the LY since the nth row sum will follow from the
zero column sums. That

L? \
forms a Lie algebra follows from
SLowLow =0, (6 3)

r

thus the product of two elements must bea hnear combina-
tion of a complete basis of L”. That result is stronger than
necessary for the commutator to be expressible in terms of
the basis elements. As a consequence of the expression of the
product as a member of the algebra it follows, as for singly
stochastic processes, that any analytic function of

L® -

is linearly expressible in terms of the L” basis and thus is a
member of the algebra. It also follows that

D =e,{-Lb___ _’_ALD_’_ e = 1 +a-LD, (6'4)

where a is the linear combination is detemined by the A. The
proof follows from the products being expressible as ele-
ments of the algebra which gives a linear combination of
elements which is an element of the algebra

aL=a,L” (6.5)

' (Convergence is guaranteed for the exponential.) A basis for

the Lie algebra L can be constructed by taking certain com-
binations of the LY generators which give vanishing row
sums. The (n* — n)LY must satisfy n» — 1 independent re-
strictions giving (» — 1)? independent

L.

We will absorb the # — 1 constraints by using the n — 1 ele-
ments on the d1agona1 just below the main diagonal. We
define

L,
beginning with LY:
0

(6.6)

where one observes that the row sums can always be made
zero by adding the terms

L=V pi=%i=2 4 4 [i+L1 (6.7)
which takes the form
0
-1 e 4+1
1 —1
1 -1 (6.8)
1 -1
0 o0
0
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(+ lin i, j position) (case for i <j).
If i > j then the sequence is
LDIJ=L"/.+ Lij+1 L pi=tj=2, 121
+Li+1,)+Li+2,i+l_;'Ln,n-l +L™", (6.9)
which takes the form :
-1 - 1
1 —1

0 . ! (6.10)

+1 —1
_ 1 -1

The basis for the Markov (singly stochastic process) could be
taken as the : ’

(n - 1)2 L Dy’
along with the (n — 1) L%~

The Lie group M” (n,R ) can be proved to be isomorphic
to GL(n,R ) by referring to the rotation R which transformed
the x,, axis into the vector [1) in Sec. III. That transforma-
tion R showed that M (n,R) was isomorphic to the affine
group which contains the (n — 1)-dimensional translation
group on the remaining x,x,--x, _, coordinates. A restric-
tion of M (n,R ) to M” (n,R ) imposes the requirement that the
vector |1) isinvariant (n — 1 new constraints) and thus in the
R transformed coordinates the origin must be invariant. The
origin is left invariant by disallowing the translation portion
of the affine group in (n — 1) dimensions, thus leaving the

allowable transformations as GL(r» — 1, R ) which is thusiso- .

morphic to M (n,R ).

VII. CONNECTIONTO &S,
The symmetric (permutation) group S, is nonsingular

and thus is in GL(n,C) for certain values of the A ’s in the

generating Lie algebra. Furthermore, since S, must permute
each element into some new position, it must consist of ex-
actly a single one in each row and each column (giving n!

possible matrices). Thus .S, must not only be Markov [in.

M (n,C)); it must also bedoubly stochastic [thusin M” (n,C})].
' Thus the n! elements of S, must be generated by some set of
Ay in the Lie algebra M”(n,C). As n!>(n — 1) for all n it
follows that some of the

L™
must generate several of the S, elements. Furthermore, if
4t’es,, '
then, because of closure of S,,,
eL’es, (7.1)
for all integers m. Using the previous result that
A =1+aL” (7.2)

and that .S, must be contained in
L

“then it follows that S, must be contained in
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1+aL?, _
for selected values of @;; . In particular when a/single a; =1,
others = 0, one obtains the permutations

o

(7.3)

Thus
L™i<))
gives the permutation x x,(x;---x;)--x, and

LPi>j+1)

-giveé the permutation

X1 X500 )xj +1"'(xi"" .
where terms outside the parentheses are unchanged and
those inside are cyclically permuted to the right. The funda-
mental permutations can be simply represented by ordered
pairs (#,j), which are defined /,j=1,--n with i%#j and
i#j — 1. They are fundamental in the sense that there is a
one-to-one correspondence between these (n — 1)* permuta-
tions and the doubly stochastic Lie algebra basis which con-

tains §,,.

Vill. CONNECTION TO M-MATRICES

M-matrices form an important class of matrices which
are connected to the theory of Markov matrices. An AM-ma-’
trix 4 can be defined by 4 = sI — B, where s >0, B; > Oand

“where spp(b ) is the spectral radius of B. The form of 4, is

ai —@p  —ap

—ay az; —dxn ;)

with ¢; >0 (non-negative diagonal and nonpositive off diag-
onal terms). Extensive literature has developed relating M-
matrices to Markov matrices and to non-negative matrices
in general. In particular it can be shown that if B is a Markov
matrix then 4 = 1 — B is an M-matrix with “property C”
(rank 4 = rank 4 2). -

" We have previously proved that a Markov matrix
B = ¢**(1,>0) has the representation B = 1 + a-L, where
the a; >0 are determined by the A;. Thus it follows from
—a-L =1~ B that — a-L is an M-matrix with property C

Joseph E. Johnson 256

]



(a;>0). Thus all those elements of the Markov Lie algebra,

which are acceptable generators of Markov transformations, -

are the negative of an M-matrix with property C.

IX. CONCLUSIONS

We have studied a decomposition of the general linear

group GL(n,R)=A(n,R)eM (n,R ), where 4 (n,R )is the .

abelian scale transformation in » dimensions which natural-
ly separates into the unit 7 and the (n — 1)H, traceless gener-
ators. M (n,R ) was defined by (1|M = (1], preserving

pRE
7

and was shown to give all Markov matrices continuously
connected to the identity when the parameters in the asso-
ciated Lie algebra were non-negative. Thus, even though
Markov transformations do not form a group, they can be
studied using much of the power and theorems available
with Lie algebras. M (n,R ) was shown to contain a subgroup
M?P (n,R ) of doubly stochastic processes and a basis of the
(n — 1)* generators of its Lie algebra were found. The M?P
subalgebra was shown to contain the discrete symmetric
group on n symbols, S, , for certain values of the parameters
over the complex field for which the transformations be-
come real. Likewise the abelian group over the complex field
A (n,C) contains the real inversions. Thus the real transfor-
mations in GL(n,C) consist of those continuously connected
to the identity through real parameters and the ‘““discrete”

~ groups which consist of those real transformations (inver-

sions and the symmetric group) which can only be reached

from the identity with complex parameters. Thus one can

ask what restrictions are placed on behavior of representa-
tions of real Lie groups under the associated discrete groups
which can be reached through complex parameters.

All subgroups of GL(n,C) can be viewed as a simulta-
neous implementation of

LH,L
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.

- and the L+ ' and thus as simultaneous scaling-, Markov-,

and doubly stochastic-type transformations. In particular,

_ the importance of classifying tensors under S, can be seen

here from a different pdint of view. _

" The Lie group approach to Markov processes allows
one to formally use some alternative approaches: If the actu-
al Markov transformation is uncertain but one knows the
probability that a given transformation is correct then the
transformation can be written

. A, i .
fn(/i,-j)e " dAy, . 9.1)

where 7) represents a statistical weighting for different traris-
formations. Since ¢*” = 1 4 @-L ‘and since one requires

then it follows that there exists a B such that’
f 7A )P dA = 5, 9.3)

showing that statistical weightings of Markov processes are
a single Markov process.
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