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This paper is a continuation of a previous investigation of a proper-time formulation of quantum me-
chanics based upon an extension of the Poincaré algebra to include a four-vector position operator. The
discrete operations of space and time inversion and particle conjugation are studied as groups of auto-
morphisms which must also be supported by the representations of the extended algebra. Supporting
representations and matrix forms of the inversions are studied in the content of a proper-time framework.
Representations of the extended algebra are decomposed with respect to their constituent irreducible
Poincaré representations, and for unique spin we connect our representations (fields) with those of Weinberg.
The basis which exhibits the Poincaré content of a representation is studied, and the transformation to that
basis is connected for spin § to the Foldy-Wouthuysen transformation. The unique spin-} representation
of the extended algebra has a decomposition which accomodates the leptons in a very suggestive way. The
leptons are distinguished from one another without “internal” quantum numbers. The physical mass
spectrum (0, m,, and m,) is both allowed and unexplained. The electromagnetic and weak currents assume

a simple form. Certain aspects of the formulation of a proper-time field theory are also discussed.

I. INTRODUCTION

N a previous investigation,' we extended the Poincaré
algebra to a larger algebra® including a relativistic
position operator X*#. Thus the time X° is treated on an
equal footing with the spatial operator for position, X.
The extended algebra (referred to as the XPM algebra)
and the X* operator were defined by the following
commutation rules: :

[P X ]=ig",
[X#X"]=0,
[P+ P"]=0,
(w0 =i X =g X
DM P iR Pr—g )
[M‘”',MP"] =—1 (g"PM”—i—g’”M"P — gVPM'I-W_ gl-WM"P) ,

where P* and M* generate translations and Lorentz
transformations. When realized as a set of operators,
the X#, P# and M* are to be interpreted as the physical
four-position, four-momentum, and four-tensor of total
angular momentum at a given instant of proper time.
The representation space of the algebra is to be inter-
preted as the kinematical specification of the state
of the system at a given instant of proper time. The
proper-time dynamics U(re,7i)=e*H (71 ig to give a
continuous automorphism of the algebra (Heisenberg
picture) or the representation space (Schrédinger
picture). The use of an invariant Hamiltonian H as
the generator for proper-time translations maintains a
manifest covariance for the theory and keeps the time

1 Joseph E. Johnson, Phys. Rev. 181, 1755 (1969), hereafter
referred to as I; thesis, State University of New York at Stony
Brook, 1967 (unpublished; paper presented at the November
1967 New York APS meeting (unpublished). Our notation is the
same as that in I, with A=¢=1, 2%=¢, P’=E, and g®=1=—g%,
We use e(a) =+1 (@>0), 0 («=0), and —1 (¢ <0).

2 Both H. E. Moses, Ann. Phys. (N.Y.) 52, 444 (1969) and J. J.
Aghassi, P. Roman, and R. M. Santilli, Phys. Rev. D1, 2753
(1970) contain treatments closely related to our a%proach in 1.
The approach of Aghassi et al. has been criticised by M. Noga,
Phys. Rev. D 2, 304 (1970). See note added in proof.

3

(X) and space operators on an equal footing. As with
the classical relativistic mechanics which we mimic,
the proper time is a formal device for covariance and
is eventually eliminated from the calculation. The
kinematical specification of states which we found was
more general than the standard theory since it included
states which were superpositions of various masses
which in configuration space appear as wave packets
spread out in space-time where JSdiyy*y=1. The
standard theory is retrieved in the limit of mass
eigenstates for free particles.

In this paper we continue this investigation in several
important aspects. We first study space and time
inversion and charge conjugation. The inversions form
a discrete group of four elements (including the identity)
and are defined below as a group via-a product table
with the restriction that they have definite commutation
rules with the XPM algebra. One is then able to view
the inversions as a discrete group of automorphisms of
the XPM algebra (i.e., a mapping of the algebra into
itself which preserves the structure constants). Thus in
order to have fields upon which the inversions are well
defined, it follows that the representation space of the
XPM algebra must also serve as a representation space
of the inversion group. Consequently, Sec. IT is devoted
to finding the (generally reducible) XPM representa-
tions supporting inversions and to finding the matrix
form of the inversions on the resulting space. The
inversions are found to be represented by umitary
operators (because the structure constants are un-
altered) which either mutually commute or anticom-
mute. Our approach rests heavily on a similar treatment
by Gel'fand et al.® with respect to the homogeneous
Lorentz group. The bilinear forms which are invariant
with respect to inversions and the transformations
generated by the XPM algebra are found. By inserting
various operators in the invariant forms, one is able

3], M. Gel’fand, R. A. Minlos, and Z. Yu. Shapiro, Representa-

tions of the Rotation and Lorents Groups and Their Applications
(MacMillian, New York, 1963).
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TasLE 1. Inversion group products. The representations of
these operators have the same product table if they commute.
But if they are to anticommute, the quantities prefaced by * are
to be taken with a minus sign.

I 1, 1, 1y
I 7 I, 1, N
1, I I I I,
1, 1y *T e 7 *,
]st ]ut *]t ]u *]

to construct other forms, such as currents and Poincaré-
invariant bilinear forms.

The concept of particle conjugation is studied as
another automorphism of the XPM algebra which
leaves the structure constants unaltered but which
performs complex conjugation and thus is represented
by an antiunitary operator. One may consider particle
conjugation and the identity as a group of two elements.

:Since the Poincaré algebra is contained as a sub-
algebra of the XPM algebra, it follows that the XPM
representations ' (which support inversions) are also
Poincaré representations which are in general reducible.
As the fundamental particles are identified with
Poincaré representations, one needs a decomposition of
the representation with respect to the Poincaré algebra.
This is then accomplished by seeking a new basis for the
representation space labeled partly as an irreducible
Poincaré representation-is labeled. The remainder of the
labeling consists of Poincaré covariants. The resulting
investigation ties together a number of ideas of the
standard theory in a simple fashion: The various wave
equations and subsidiary conditions are seen to be
eigenvalue equations for these Poincaré-covariant
operators. The imposition of wave equations becomes a
requirement that a physical particle belongs within a
Poincaré-invariant subspace of the X PM representation
space. The transformation between the old basis and
the Poincaré basis constitutes a solution of the wave
equation. For spin 4 this transformation contains the
Foldy-Wouthuysen transformation as one portion of
the basis transformation as seen on part of the rep-
resentation space. The operator X* when viewed on
this portion of the space, becomes a direct four-vector
generalization of the Foldy-Wouthuysen three-vector
operator (since their spatial parts are identical). We
discuss this basis for the unique spin representations
and connect our framework with Weinberg’s theory
for the corresponding spin. We present a detailed
discussion of this program for spin, where the Poincaré
basis is defined by the operators e(y-P), (P, m, k,
and helicity ° It is found that for spin % the XPM
representation space consists of a fourfold infinity of
irreducible unitary Poincaré representations determined
by the four sign combinations of P® and v P for each
mass 7 from zero to infinity.

In Sec. ITI we point out that the leptons can be
placed in this one X PM spin-4 representation. Positive
and negative energy are associated with particle and
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antiparticle of the same mass while v+ P=me(y - P) has
the spectrum m,, 0, —m, for the electron; neutrinos,
and muon. This spectrum for - P is allowable within
this framework but remains unexplained. The electro-
magnetic and weak currents assume an appealing form
and the leptons are distinguished from one another
without additional internal quantum numbersor degrees
of freedom.

II. DISCRETE AUTOMORPHISMS AND TOTALLY
INVARIANT BILINEAR FORMS

There are certain discrete mappings {or automor-
phisms) which carry the elements of the XPM algebra
of observables into a new set with the same structure
constants. Those automorphisms of particular interest
are the space and time inversions and charge conjuga-
tion since they can be more or less understood physically
in terms of inverted spatial axis, inverted sequences of
events, and the interchange of antiparticle and particle.
In the usual treatment these automorphisms are
defined in such a way as to give the intuitive results of
such operations. Such an approach is also dictated by
the mathematical framework of the standard theory.
For example, time inversion changes X° but leaves the
energy P° unchanged since P? is taken as the Hamil-
tonian and must retain the physically admissible
spectrum P9>0. Furthermore, reversal of the time
sequence of events means that P— —P while X— X,
with the result that time inversion alters the sign of
the commutation rule [ X% P¥]=¢8*. Thus time inver-
sion must be represented by an antiunitary operator.
These arguments are generally familiar.

Within a framework using the XPM algebra and a
proper-time dynamics, a slightly different approach
suggests itself. The automorphisms can be most
symmetrically approached by considering a single
antiunitary operation closely related to complex
conjugation. It will be seen to be equivalent to particle
conjugation and performs a certain (antiunitary)
automorphisin defined below on the algebra. Separately
from this automorphism we can define an inversion
group of four elements: the identity 7, space inversion
I,, time inversion 7, and space-time inversion [,,.
This discrete group of four automorphisms leaves the
XPM structure constants unchanged, and they can be
represented as unitary operators on supporting XPM
representations. This separation of the problem is
advantageous from both a mathematical and a physical
point of view when using a proper-time dynamics.
Other automorphisms may be formed which are
products of these automorphisms. We will first study
the inversion group and find the matrix form of the
operators and the supporting representations.

The group multiplication table for space (I,) time
(1,), and space-time (I, inversion operators is given
in Table I (with the identity represented by 7). Within
a proper-time formalism the most natural definitions
for the commutators of the inversions with the XPM

.
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generators are given in Table I1. Those rules involving
M# and X, are the same as one traditionally uses.
The angular momentum tensor L#=X#P*— X*Ps and
spin tensor S*=M®—L# are transformed under
inversions in the same way as M*". The distinguishing
feature of our definitions is that we take the inversion
of P¥ to be the same as X* thus maintaining their basic
symmetry. This is possible within a proper-time
dynamics and is consistent with our requirement that
the proper time r and mass m=-+~/(P,P¥ are to be
unchanged by these inversions, We see that the physical
subspace m>0, m?>0 is mapped into itself under
inversions, and the free-particle motion in the Heisen-
berg picture, dX*/dr=P*#/m, is inversion invariant.
One observes that when 7 is eliminated, one gets the
traditional inversion properties for the standard three-
velocity, dX%/dX° and three-momenta, Pi/Po, This is
because a negative-energy particle in a proper-time
framework which has Pr=(—|P%|, P) actually rep-
resents motion in the direction ~P=¢(PO)P with
spin e(P%)Sw,

We are interested in finding those representations of
the XPM algebra which will support the inversion
group, and in finding the matrix form of the inversions
on the generally reducible supporting representations.
In I we found all XPM representations by taking the
direct product of the von Neumann algebra (XP)
representation with the homogeneous Lorentz algebra
(S*) representations. Thus the action of any inversion
on the XPM representation will be the direct product
of the matrix forms of the inversions on the XP and
S representations. We thus study the inversions on
the separate subalgebras. -

We first consider the inversions on the X P algebra.
It readily follows from the commutation rules that

I.|a%e%)=n.|a’, —a),
I,]a“,a"):m , —d, (1') ’
Lot |a°,d")=n,,| —a’, _'a‘i) )

where a* represents the eigenvalues of either P# or X*.
Since the square of an inversion is the identity, then
n=z=1 for each n. Furthermore, since 7,7,=1,, then
Ns¢="7,1:. The bilinear invariant form

(a'*a¥)=6*(a"*~a¥)

remains invariant under all inversions as well as the
completeness relations. It is easily checked that the in-
versions are both unitary and Hermitian on this scalar
product.

We now consider the inversions acting upon a
representation space of the homogeneous Lorentz
algebra. Gel’fand et al.® contains a thorough discussion
of these representations. We briefly summarize their
results not only for completeness, but also because one
obtains slightly different results when the XP algebra
is adjoined due to the use of a proper-time dynamics.
They show that the two-valuedness of some S*

Tasie II. A positive or negative sign indicates whether the
two operators indicated in that row and column are to anti-
commute or commute, respectively.

X0 Xi po pi Sii Qoi by by Y oy P 6
L = 4+ - + - + — + - + - + +
Lo+ =+ = - 4+ 4+ - - - 4
Ip + + + + - - - — + + - + =
Ke = =+ 4+ + + - 4+ + + - - -

representations can lead to a two-valuedness of the
representation of the inversion group. This has the
consequence that the matrices representing the inver-
sions can either mutually commute or anticommute and
still form a representation of the group products in

Table I (to within a sign). In each case, of course, the.

inversions must have commutators with S¥ given by
Table I1. We will use the same symbol for the abstract
group element and its matrix representation (although
they may differ by a sign).

We first take the case where the inversions mutually
commute. Then either 7,,=++71 with I,=7, or I ;= —1
with I,=—1I, For each of these possibilities, 7, is
determined by whether the representation is self-
conjugate or not. .

Case I. If the representation is self-conjugate (b=0
and thus either 8,=0 or #;=0) then there are two
inequivalent representations (distinguished by N5
given by 7,|bo,b1,5,0)=7n,(—1)"|behs,5,0), with 7,
=-1orqg=—1.

Case II. If the representation is not self-conjugate
(b><b and thus neither =0 nor b:=0) then there is
one representation given on the reducible sum space
‘ b"g’o->® |b)s,0> by

Li|bs,o)= (=1)=[bs,0),
13,6)S)°'>= (— I)E—bolb)s)"? .

If we define a new basis by
6)=18) and [b_)=(=1)=%|),

then 7, becomes I,|by,s,0)=|b7,5,0). Still another

commuting representation is discussed by Gel’fand
et al. if the space is doubled. :

If the matrices representing inversions anticommute
then there are just two cases depending upon whether
the representation is self-conjugate or not.

Case IT1. If the representation is self-conjugate, then
one forms a sum space by adding another identical
representation |8.)@ [bs), where ¢ and & are used to
distinguish the two identical representations. By choos-
ing the basis [by)=[6a)+1|bs), [6_)=(—1)"b(|8,)
—1|bs)), the inversions take the form

01 0 —¢ +i 0
S G
1 0 i =0 0 -1

on the space (: Zﬁ; ) .
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Case IV. If the representation is not self-conjugate
then one forms the sum space |5)® IB): Using the basis
defined by [b.)=8), |b_)=(—1)*""|b) the inversions
take the same form as in case III.

We can now find the form of the inversions when
acting on an X PM representation by taking the product
of the inversions on the separate X P and S* representa-
tion spaces. At the same time we will discuss the
invariant bilinear form for each case when the spin
representation is finite dimensional. For case I we have

I, , aorai;b)s)°'>=773 ‘ al)’ '—a’iy b; 5, 0> ’
1, l aoyai’b)s:°'>=77! ’ -0'07 a’iy b} 5 0> )
I.|a%aibs,o)=ngm| —a® —a’ b,s,0),

where a* represents the eigenvalues of either P# or X*
and where, with independent signs, n,==(—1)"%
and 7= (—1)*% and thus n,n==1. The bilinear
form invariant under both XPM and inversion trans-
formations is given by {a’*,b",s',¢' |n|a*,b,5,0)= (—1)= b
X84(a’* —a*)8p b0y s00s. We use the symbol 4 with no
subscript for the metric. Since b is self-conjugate and
is to define a finite representation, &, must be zero and
b1 must be an integer. Thus the factor (—1)* b= (—1)s
gives an indefinite scalar product except in the b;=1
case of unique spin zero.
For case II we get the commuting inversions:

I, ' a°,a",bi,s,0') =17 | a’, '_ai’ b, s, °'> s
Il' aoaai)bi7s;°'>=m| —a’, a’i: b, 5,0),
I, ' aoaai:b:h:s;°'> NNt | —a’, —"ai) b:i:a Sy °'> )

where 5, and 7, are independently =1, The totally.

invariant bilinear form is
<d’“,bi,,5,,0', ‘ n ’ d“,bi,s,a'>=54 (a,#_a“)ab?'.biaa’yaaa’w .
For cases ITI and IV we have

1, ‘aoxai:bivs"7> =1s | a’, _ai’ b:F: S °'> ’
1,]a%atby,s,0)=1n,| —a°, @, b, s, o),
1, ' a%a’,b,s,0) =i77¢"7l| —a%, —a', by,s,0).

The bilinear form which is invariant under XPM
transformations and spatial inversions is the same as
the bilinear invariant in case II. However, this form is
not invariant under 7, and I,;, because it changes sign
under each. In order to get a totally invariant bilinear
form, we need to multiply the metric by an operator
which commutes with all operators except I; and I,..
With these it must anticommute. Although no operator
satisfies this requirement exactly, the sign of the energy
e(P?) satisfies it except when operating on states with
P°=(, For physical particles this does not appear to
entail problems except possibly for m=0 states in the
limit of zero momenta. Thus we will use the totally
invariant bilinear form (on the momentum basis)

<k"‘bi,3,0', | n 'kl‘ybrg;a’> = é(k0)64 (k,“—k“)ab¥'vbiaa’aaa’a-

In the limit of P?=0 this gives a zero norm,

One can also consider the automorphism K, of
particle-antiparticle conjugation. We define K. by the
following mapping of the algebra i— —i, X*— X*,
Pe— —pPr, M#— —M# and, consequently, L*—
—L#* S#»— —Sw, The operation is easily pictured
when the spin representation is trivial (i.e., no spin)
by acting on the position diagonal representation with
an operator which just performs complex conjugation.
For finite-dimensional S** representations the invariant
by is real. From the equations 15,,5%"=8?—R?=b¢--b,*
—1 and }e.,,.5577=S-R=—ibob;, it follows that
since S#*— —S# under K, b must change sign.
The matrix which accomplishes this can be worked out
for individual cases by simply observing the commuta-
tion or anticommutation rules of X, with the operators
whose eigenvalues label the basis of interest.

III. POINCARE CONTENT—WEINBERG'S
FORMALISM

The Poincaré (PM) algebra is a subalgebra of the
X PM algebra and thus the XPM representations form
(generally reducible) Poincaré representations. The
elementary particles (or fields) are associated with the
irreducible Poincaré representations. Thus it is of
interest to choose a new basis for the X PM representa-
tions which exhibits the irreducible Poincaré representa-
tions contained in it. This can be done by choosing a
new representation space to be an eigenstate of commut-
ing Poincaré invariants. We will see that the selection
of this basis (i.e., finding the Poincaré invariants) in
each X PM representation is equivalent to a study of all
possible relativistic wave equations and restrictions by
subsidiary conditions, at least within the standard
framework. Furthermore, finding the transformation
matrices to the new basis will be equivalent to the
solution of the “wave equation.” Before discussing the
general problem any further we will consider the special
but important case of unique spin representations.

The unique spin representations of the X PM algebra
which support the inversion group are spanned by the
basis vectors |k#.b,s5,0)6 | k*b,s,0), where b denotes the
conjugate representation. We have used the momentum
representation with k# (the eigenvalue of P*) ranging
over all physical four-momenta. Instead of 2* one may
use the set k=4+/(k.k*), e(£%), and k. Because we are
dealing with a unique spin representation, bo=s,
by=s41, and the conjugate representation b is given
by bo=s, bi=—(s+1). These two representations are
distinguished for a given s by the sign of 4;. Thus for
each mass m there are four separate parts to the space
given by the four sign combinations of (k%) and e(by).
However, b; is not a Poincaré scalar, but rather a
pseudoscalar, since it changes sign under both space
and time inversions., One would guess from the fourfold
nature of the space that it contains exactly four irreduc-
ible Poincaré representations. This is a true result but
to show it we will find a Poincaré scalar which is
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|
|
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inversion invariant to replace 8,. The new scalar would
be expected to have two and only two eigenvalues
because of the multiplicity of e(b1).

This problem was solved by Weinberg* from quite
a different approach by building up fields from irreduc-
ible Poincaré representations. Several such representa-
tions were needed in order to support the inversion
group. After his building process was complete, the
field which resulted had twice as many components as
desired. The desired number of irreducible Poincaré
representations was two, corresponding to particle and
antiparticle. Thus one needed a constraint to reduce
the number of components from four to two. This
constraint equation becomes a wave equation for local
fields and in momentum space becomes a constraint
upon a Poincaré invariant reducing the number of
components by half. This invariant is precisely the one
we seek. Weinberg proved that the unique spin represen-
tation space supports a tensor operator sy#iss-:-se
which can be constructed from the bilinear forms on
the space. It is a totally symmetric¢ traceless tensor
which is a generalization of the Dirac matrices. It
trivially follows from his Eq. (B10) and the supporting
equations yreE '”2’7”"2' ’ 'yhPmPMz' o P#z.PHP"z' ! 'P,h
=m* that vy, .., PP Prra=d4-m?, Intuitively
one sees the sign multiplicity most clearly by going to
the rest frame. For the case of spin } this becomes
v.P*==4m. Thus his wave equation (7.19) is a con-
straint which eliminates half of the representation
space.

One is reminded that in Weinberg’s formalism, as
in the standard approach, that these restrictions
contain the dynamics of the free fields. In our approach,
the equations Involving %, ug..u,, P##2 42 are kine-
matical restrictions which are in principle no different
than an equation restricting the helicity to be positive
or negative. The dynamics is given by the proper-time
development operator ¢*7, It is only in the special
case of a mass eigenstate without interactions that one
can reduce the dynamics to this form.

Returning now to the point of view of this paper,
we see that .., P*'P#-- P is the Poincaré
invariant we seek. The basis which makes the Poincaré
content of the XPM representation explicit is

|k,e(k°),e(‘y,,l- . ,7“2’})»1. ) 'P”"),S,k,lé/o),

where 0= S-P is the helicity, and must be used instead
of o, the third component of spin, because the spin .5?
does not commute with yu,...u, ¥« - P#2. Thus each
unique spin X PM representation contains a fourfold in-
finity of irreducible Poincaré representations. The wave
equations of Weinberg are thus seen as eigenvalue
equations showing in which Poincaré subspace a given
vector lies. The subspaces |#) of course satisfy the
equations (Ypj..., P*1+ « - PrasFm2) | £)=0. One would
expect that the two signs of the energy ¢(P°) correspond

¢S, Weinberg, Phys. Rev. 133, B1318 (1963).

to representations denoting particle and antiparticle.
The two signs of ¥pu,...u,, P*'+ + - P#% have no interpreta-
tion at this point except to imply that they correspond
to two different particles. We will return to this point
in Sec. IV. In order to make the nature of these sub-
spaces more lucid we will continue our discussion with
the familiar case of S=1, i

For spin %, the Poincaré content is exhibited with the
basis |k,e(£9),e(y.P#),k,w%. Half of the space e(y:P)
=1 satisfies the Dirac equation (y-P—m)|y-P>0)
=0, while the other half satisfies (y+-P+m)|v-P<0)
=0. Each subspace is mapped into itself by both the
Poincaré group and charge conjugation, and by the
inversions. The metric, discussed previously, becomes
n=7%(P") for an anticommuting inversion group. The
space is actually an eight-component space for each
value of the mass k>0 and three-momenta k. The
operator X* does not commute with e(y-P) or with 2°,
Thus the most natural basis for a localized state is
either |y* e(b1),0) or |y*,v%0e). The first of these is the
familiar vs-diagonal representation since 3% eu,q.5*.S#¢
=1ibeb1=3%vs and thus e(41)= —iys. The other is the
familiar y%diagonal representation which is useful
because of the form of the metric. The various operators
are written out in these representations in the Appendix.
If we have a given particle, say, an electron, then it is
to be associated with an irreducible Poincaré representa-
tion with a given mass m,. By convention it is taken to
be the positive energy v:-P>0 subspace while the
positron is the negative energy v+ P>0 subspace (the
two being related by charge conjugation). In the
momentum representation it is then obvious that the
particle corresponds to one irreducible Poincaré
representation and likewise for its antiparticle. Each
is represented by a two-component object with compo-
nents corresponding to the two spin projections. When
the electron is represented by a local field, however, one
needs four components because the two-component
electron subspace has nonvanishing projections on all
four components in configuration space. The nonvanish-
ing of these projections results in turn from the original
commutators for X* which came from requiring that
Pr generate translations in space-time (or equivalently
that the local fields are found by Fourier transform).
QOur formalism at this point exactly parallels the
standard Dirac theory. _

The transformations between the various bases are

‘most easily found as follows: The unitary transforma-

tion from <vs; diagonal to 4° diagonal is well known
(see the Appendix). The transformation from k*
diagonal to y* diagonal (simultaneous with either v
or v° diagonal) is simply (27)~% exp(ik,y*), giving the
four-dimensional Fourier transform. We thus need to
connect only one of these bases to the one with v-P
diagonal, One first performs the unitary transformation
from |k*,v%0) to a helicity representation and then
performs the unitary transformation to diagonalize
v+ P. By combining these transformations one may go
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from any one basis to any other. The important point
is that the Dirac equation is “solved” by the trans-
formation, and the components of the transformation
constitute the “‘solution,” as can be seen by inspection
in the Appendix. This transformation can be used to
find X¥, v#, M*#’, etc,, in the Poincaré representations.
In the Appendix it is shown that the transformation
to the v-P>0 part of the Poincaré basis form, for
example, the y%-diagonal basis is precisely the Foldy-
Wouthuysen® transformation. Furthermore, it can be
seen from the fact that the metric,

("2 -

’ 0 -1/’

is invariant under the transformation that such a
transformation can be cast into the form of a Lorentz
transformation on the spinor variables.® More precisely,
since the transformation is functionally dependent upon
the momentum operators, we find that the transforma-
tion when written in the form of a Lorentz transforma-
tion depends upon a velocity which is written as a
function of momentum operators. Thus it transforms
with different “velocities” when acting on states with
different momenta. Furthermore, the transformation
commutes with P* and thus does not alter the four-
momenta of a state, but acts only on the spinor variables
of the space. The position operator X# in the Poincaré
basis thus becomes a direct four-vector generalization
of the Foldy-Wouthuysen position operator because
the three-vector parts are identical. But we emphasize
that in performing this transformation we are looking at
the same algebra of operators, only in a different
representation. Apparent differences arise from the
fact that they act on particles which are irreducible
Poincaré representations.

The metric ¥%(P?) retains its diagonal form in the
Poincaré basis because Uty%(P?) U =v%(P"), where U
represents the unitary transformation {k,e(P%),e(y-P),
k0| k,e(P9),v%k,s) taking one from the original (y°)
basis to the Poincaré basis. Thus the metric is diagonal
on the representation space |k,e(P9),e(y-P)k,w"
having the form

<+1 0) <|’Y'P>0>>
on _ .
0 -1 |v-»<0)
The scalar product is thus

<li€(_k0/),€('Y ' k/);k/)wm| n ‘ kye(kn) 75(7 : k),k:w())
| &°]

=e(y-k)

s(k'—Fk)83(k'—k)
k

X8 (k%) e (1) 0w, we (v k") e (v-k)

5 Leslie L. Foldy and Siegfried A. Wouthuysen, Phys. Rev,
78, 29 (1950) ; Leslie L. Foldy, ¢bid. 102, 568 (1956).

8 This observation was first made by Herbert Jehle and William
C. Park, Phys, Rev, 137, B760 (1965).

[where it is to be noted that the metric y%(k°) = e(y- &)
for m>0]. The completeness relation may be written as

@k
1= / kdk )>

’k0| e(k0) e (w0) e (v k)

|y (k) ey - ) e )
X (k,e(ko),e('y ~k),k,w0 | )

which also acts as a projection operator onto the
physical states since imaginary and negative mass is
not included in the integration. The totally invariant
scalar product for a field |¢) is given by

W) =W|n1]y)
=§E¢a*(v~P> OWaly-P>0)

—¥o (v P<OWa(y-F<0)],

where ¥(y- P> 0) is the projection of ¢ onto the y-P>0
subspace and where « refers to the remaining indices.
The various scalars v P, (P9, vs, and mixed products
of these may be inserted in the invariant bilinear form
to give various bilinear forms which are Poincaré-
invariant bilinear forms and have obvious inversion
properties under space and time inversion. We note
that since the metric is definite within each Poincaré
subspace, it follows that these irreducible Poincaré
representations are unitary.

The nature of the m =0 states is not obvious using
the Poincaré-invariant basis since e(y:-P)=0, i.e.,
the sign multiplicity is lost. Furthermore, there appear
to be eight m=0 states viewed in the representation
|k=0, e(kY), e(b1), k, w®). However, the transformation
taking one from the ;5 basis to the Poincaré basis results
in states |m=0) which satisfy v+ P|m=0)=0. It is well
known? that-this equation reduces to (P =4yse(w?)
which admits only four states. The eigenvalues of
tys=e€(b1) thus replace those of e(y:P) but are con-
strained by the equation 7ys;=e(P%e(w?). Thus the
labeling |k,e(%%),w% for m=0 states is sufficient. The
other four m=0 states appear to be connected to the
limit # — 0 from imaginary mass states. Each of the
four m=0 states constitutes a Poincaré-invariant
subspace. They are mapped into one another under
the inversicn group.

There is always some concern for the probability
interpretation when the representation space has an
indefinite bilinear form or scalar product.® This is
because there are null vectors in the space which cause
difficulty with normalization and the computation of
expectation values. When the space can be separated
into two subspaces, |+) and |—), such that the
metric takes the form

<+1 0)

0o -1/’

7 For example, Silvan S. Schweber, Relativistic Quantum Field
Theory (Row, Peterson, Evanston, IIl,, 1961), p. 111.

8 K. L. Nagy, State Vector Spaces with Indefinite Metric in

Quantum Field Theory (Noordhoff, Groningen, The Netherlands,
1966).
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then the difficulties may be overcome by restricting
the physical space to those vectors which lie exclusively
in one or the other subspaces. In order to achieve an
unambiguous theory, one must have a unique method
of achieving the separation into subspaces. In the
present formalism this unique separation is defined by
the Poincaré basis; in particular, for unique spin
the subspaces are eigenstates of v, ,,....,, P*LP#2: « - Pts,
Thus a probabilistic interpretation is possible only if one
requires that the physical subspace contain no mixture
of these two subspaces. In the case of a spin-§ particle,
this implies that physical states cannot be a linear
combination of the two Dirac particles. Thus the
requirement of a probability interpretation within the
present framework with amplitudes at a given instant
of proper time requires a superselection rule between
the v-P>0 and v-P<0 subspaces. This restriction
does not hold for m =0 states because there is no proper
time for these states and thus no restriction on the
probability interpretation of the amplitudes at a
given instant of 7. The Hamiltonian which specifies
the dynamics must keep one within the physical
subspace.

The discussion presented for spin % can be trivially
carried through for all unique spin representations.
With the exception of spin 0, a doubling is obtained for
all other representations. One can eliminate the extra
particle-antiparticle pair in a Poincaré-invariant manner
if desired by dealing with only one subspace. Incidently,
the mixed spin representation for the four-vector
electromagnetic field is self-conjugate and thus there is
no doubling of states for this case.

In view of the preceding discussion, the program for
studying any of the other representations is also
apparent. One could use any of the XPM representa-
tions supporting the inversion group to define a field.
This representation is then to be decomposed into
Poincaré-invariant subspaces by going to a new
representation utilizing Poincaré invariants. The
enumeration of all Poincaré-invariant restrictions,
Q|¢)=0 (whether the restrictions are “wave equations”
or “subsidiary conditions’), is equivalent to a restric-
tion to a certain Poincaré subspace. The other subspaces
can either be ignored as discussed or, if useful, assigned
to other fundamental particles. One can require that
the projection of operators onto the subspace of interest
constitutes the observables. Then any transformation
on the orthogonal subspaces leave the observables
unchanged.

The construction of all Poincaré invariants for non-
unique spins involves forming all Poincaré scalars
supported by the representation. This in turn requires
a knowledge of all tensor forms T'##2'#» which are
supported by the S** representation and which have
well-defined  transformation properties under the

Lorentz group (or equivalently have tensor commuta-
tion rules with S#), These tensor forms are in turn
formed from all bilinear forms constricted on the S»
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representation space. The decomposition of such forms .
is well known from decomposing the cross products of
S# representations with their conjugate representa-
tions. Thus there are in general an infinite number of
“wave equations” which could apply to a particle of
spin S if no other physical restrictions are imposed.
One simply chooses a representation containing spin S
and requires that only one of the Poincaré-invariant
subspaces in the physical space. These representations
differ in their transformation properties under S=*
and inversion transformations. The local fields also
have different compositions. The connection between
our kinematical representations and those of the
standard approach is very close. Traditionally, one
considers a homogeneous Lorentz (S**) representation as
functions of %# for a fixed mass. This is equivalent to
taking the direct product |k4)® |b,s,0) for a fixed mass.
The imposition of ‘“wave” or constraint equations is
then equivalent to a restriction to a given subspace.
This is precisely the momentum representation space of
the XPM algebra. Traditionally one then finds the
local fields by Fourier transform from the |24)® |b,5,0)
space. This is again exactly what we achieve as a
result of the X* commutation relations.®

IV. APPLICATIONS TO LEPTONS

One has traditionally progressed in field theory using
only the space y-P>0 for spin-} particles. That such
a procedure is possible derives from the Poincaré
invariance and mutual orthogonality of the two sub-
spaces. We could also proceed this way in a proper-time
formalism. It is to be noted, however, that the y:- P<0
space represents a true Dirac particle-antiparticle pair
with the four-momentum reversed.'® For any given
spin-% particle-antiparticle pair, one could not dis-
tinguish whether they belonged to the - P>0or y- P<0
subspaces. In fact, one could place the electron and
positron in the y:P>0 space and any other spin-3
particle-antiparticle pair in the other space.!! One
could then use the projections of operators onto one or
the other subspace to obtain the standard theory. Of
course, nothing would be gained if the particles bore
no intimate relation to each other.

The electron and positron appear to be point particles
and very accurately described by the Dirac field. It is
strongly suggested by the above work that one ask if
there is another particle whose properties-are so similar
to the electron that it can usefully be placed in the

® These considerations give the connection between our frame-
work and the standard theory, enabling one to exploit most of our
considerations without using a proper-time dynamics.

10 This has been realized for a long time; the difference arises
here from the property that the representation space contains
both v-P>0 and v- P <0 in a single representation.

11 We emphasize that the two signs of <P each contain both
positive and negative energies and that we are not referring to
the well-known procedure of recasting the negative-energy v-P>0
solution into the form of a positive-energy v- P <0 solution,
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other subspace!? The perfect symmetry between the
two subspaces leads one to expect that any operator
form acting on one subspace which is contracted with

an outside field would have a similar projection onto’

the other subspace and that projection would he
contracted to the same field. Thus one would seek a
second particle which had a symmetrical, if not ident-
ical, interaction form to that of the electron. In partic-
ular, the electromagnetic interaction should be identical
for the electron and the other particle because the
electromagnetic current v* has a totally symmetrical
form on the two spaces. Furthermore, the weak leptonic
current formed from the electron-positron field and its
associated neutrino, L=y (1—iys)¥,, suggests that

.a similar current might be important when taken

between the two omitted neutrinos and the other
subspace. These are both just suggestive arguments
based upon the symmetrical nature of the current
operators .as projected upon the two subspaces. The
muon and its associated neutrino satisfy all of these
requirements to a remiarkable degree.

Let us then investigate the possibility of placing all
leptons and their antiparticles within this single
irreducible improper spin-3 representation of the
XPM algebra. One is reminded that the unique spin-}
XPM representation |m.K,e(P%,e(y-P)w® contains
in one irreducible XPM representation two [e(P?)
=17 irreducible Poincaré representations for each
value of v P=¢(y-P)m, where v-P ranges from —
to 4+ . The four neutrinos can be placed in the y-P=0
subspace, the electron and positron in the y-P>0
subspace, and the muon and antimuon in the y:- P<0
subspace. We point out that the opposite choices for
the massive particles would be equivalent.

The first question which arises concerns the mass
differéence between the electron and muon and the
resulting asymmetry between the subspaces into which
they are placed. From a kinematical point of view, one
has a continuum of masses available from zero to
infinity for either sign of y-P. Each mass, for each
sign of v-P, forms a subspace for particle and anti-
particle which is Poincaré invariant and inversion
invariant. Therefore, these symmetry operators cannot
take one between the two subspaces and consequently
the masses are not required to be equal.® Thus the mass
asymmetry in the v-P spectrum: m,, 0, —m,, appears
to be both allowable and unexplained. The actual
physical masses must be introduced as knowledge about
the incoming states and as allowable creation and
annihilation operators in the interaction, thus giving

only allowed transitions to the physically observed-

out-states. Perhaps some future dynamical theory will
give these three values for the - P spectrum.

12 Portions of this section were presented at the Southeastern
Section Meeting of the American Physical Society, November
1969.

1 This is in contrast to the fact that particles and antiparticles
must have the same mass, because they are represented by posi-

In order to develop a dynamical theory, we need to
write a Poincaré-invariant leptonic Hamiltonian H=H,

4 Hem+Hyy. First consider Ho. In I we used-a free-

particle Hamiltonian Hy=-4+/ (P, P*)=m with the
idea that on spaces with indefinite metric, like spin %,
we would reinterpret the creation and annihilation
operators to make m positive definite in the same
manner as the energy is ordinarily made positive
definite. This procedure, although possible, does not
lend itself as easily to the incorporation of electro-
magnetic interactions. An alternative procedure sug-
gests itself in which this difficulty is not present and
in which there is no “reinterpretation” of the operators.
After looking at the various Poincaré-invariant bilinéar
forms, one notices that (¢ |7y- P|¢) is positive definite
since n=e(y- P) on the Poincaré basis. Furthermore, it
is inversion invariant and has the correct dimensions
for a Hamiltonian. Since the physical space must be
an eigenstate of v+ P (to avoid null vectors), it follows
that y- P will give the magnitude of the mass operator
when acting on particle states. If we use Hy=+-P then
the creation and annihilation operators need not be
reinterpreted to make H, positive definite. The dif-
ficulties discussed in I with regard to this Hamiltonian
do not appear on the Poincaré basis. This is related to
the fact that the Poincaré basis is achieved by a
Foldy-Wouthuysen type of transformation from the
original basis. We emphasize though that the Dirac .
equation is a consequence of separating the space and
holds for either Hamiltonian.

With regard to interactions, we see that a local field
|y) projected onto the physical portion of the space is
given by

|yay=2_ a'k|kB)kB| | y)
8 physical
=2 d'k(B| a)ettnv*| kB),
8 physical

where o runs over the signs of 4° and ¢, and 8 runs
over the signs of y-P and ® The matrix (8|e) is the
projection of the Poincaré basis onto the ¥%, o basis and
is equivalent to a solution of the Dirac equations (see
the Appendix). More precisely, (8|e) are the matrix
elements of the generalized Foldy-Wouthuysen trans-
formation. Thus, generally speaking, a “local field”
is a linear combination of pesitive- and negative-
frequency parts for v+ P=m., 0, and —m,. In practice
one must take a small distribution of mass centered
about these values and later let the width of the
distributions approach zero to get mass eigenstates if
desired. Ome can project out any particular subspace
in forming the interactions. In a second quantized
version, the above bra and ket vectors would be replaced
by creation and annihilation operators. The integration

tive- and negative-energy solutions connected by I, and K, which
both commute with mass.
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over all space-time of a Hamiltonian density formed
from these local fields then gives exact four-momentum
conservation for the interaction. These fields are essen-
tially the same as the standard local field in the limit of
mass eigenstates. For example, the component of the
local field projected onto the y- P> 0 space is the same as
the local Dirac field and satisfies the Dirac equation in
the limit of a mass eigenstate.

We can construct the electromagnetic current in
the following way. The projection operators for the
electron and muon spaces, respectively, are 14+vy-P/m
and 1—v-P/m. The electromagnetic current must be
constructed from v* as in the standard Dirac theory,
but may be multiplied by any Poincaré scalar. The only
two scalars which give the correct space-time inversion
properties for the current are 1 and ¢(y-P). The scalar
e(P") cannot be used because it would give the same
charge for particle and antiparticle, i.e., 7° would not
change sign under charge conjugation. Thus the electro-
magnetic current is either of the form (¥ |yy*|¢) or
(¢ |nely: P)y*|¥). If we require that the electromagnetic
current vanishes for the neutrino, then only the latter
form is permissible. Thus it follows that if the electron
is assigned to the P°>0, v-P>0 subspace then the
positron is the P°<0, v- P> 0 subspace and the y- P<0
space must have P°>0 for the ut and P°<O0 for the
u~. The result that the muons have the opposite sign of
the energy for a given charge is compatible with the
idea that the ¥-P<0 space is a Dirac particle with the
four-momentum reversed. The local current density at
a fixed instant of proper time may be found by inserting
a complete set of local states as was done for spin O in I,
Then Hem is formed as Sd%y j.(y)4*(y), giving the
interaction at a fixed instant of proper time of the
particle whose current is j,.

We would now like to find an expression for the weak
leptonic current. By analogy to the standard expression,
we can write L, as

Le)“ = <¢al 777)‘(1 '_175) l¢m=0>
v-P
Yl (1+ —)wa —8) [Ymeo)
mw

for the electron portion of the current. The states |¢)
used in this section should be thought of as creation
operators for the respective states. The factor 1—iys
projects out the electron neutrino and antineutrino
from the four possible m=0 states, while 14y-P/m
when acting on the m%0 states will project out the
electron subspace. However, we now find an unusual
consequence of our previous result that the x4~ must
be associated with the P°<0 portion of the y-P<0
space. It is known that the muon interacts with
the muon neutrino with the same helicity projec-
tions 1—7vs, as the electron does with its neutrino.
However, within our framework, to get the correct
helicity projection for the u— it must be contracted

with the 14-7v; portion of the m =0 space. Thus
Lp}= (‘/’u| m*(14-4ys) h(/m=0>

~-P
= (l//m;éﬂ‘ (1 - —>777X(1+i')’5) "/’!n—0> .

m

This may be seen directly by inspecting the solutions
for v-P<0 in the Appendix and observing that in the
vs diagonal representation that the P!<0, v-P<0
solution for the u~ is identical to the P>0, ¥-P>0
solution for the e~ with its upper and lower components
reversed. Consequently, the muon neutrino must be
represented by the 144y; projection of the m=0
states in order to correspond to experiment. This gives
us a way of distinguishing the muon and electron
neutrinos by “space-time” variables as follows. The
values of €¢(P% and e(x?) are +1—1 for »,, —1, +1
for ., —1, —1 for »,, and -1, 41 for #,. One may now
sum the two portions of the leptonic current to get
L}=(mseo| [1—i(y- P/m)ys Jrv* [¥m=o). Hex is then
formed as Hyyp=f"dby Lyt (v) L (y).

There is an intuitive way to see why the opposite
m=0 solutions must be used for the muon neutrino
without looking at the solutions. It is because the u~
is associated with a negative-energy state. In fact, in
the standard theory, if the ¢~ had been associated with
the negative-energy Dirac solution one would have
been forced to view neutrinos as the 144y; projections
of m=0 particles, Thus the results which we have
obtained can be stated within the standard theory if
one associates the u~ with a negative-energy state,.
The incorporation of both electron and muon neutrinos
into one four-component massless field has been
approached from several points of view in the litera-
ture.!* What is new in our formulation is the distinction
also of the electron and muon fields by a variable which
arises naturally from a space-time framework [i.e.,
€(y- P)]. Furthermore, all lepton states are incorporated
into one irreducible representation of a space-time
algebraic structure proceeding from little more than
the standard notions of locality.

V. GENERAL REMARKS

In conclusion we would like to consider some addi-
tional aspects of our formalism with particular emphasis
on areas for further development. First of all, with this
manifestly covariant approach to discrete operations
as groups of isomorphisms on the XPM algebra, one
treats X° and P° on an equal footing with the other
operators. Since the interaction is carried by the
invariant Hamiltonian H and not the energy P? it
follows that time translation will commute with space
inversion even for parity-violating interactions. It has
been pointed out that this noncommutativity in the

14 See, e.g., R. E. Marshak, Riazuddin, and C. P. Ryan, Theory

of Weak Interactions in Particle Physics (Wiley-Interscience,
New York, 1969).
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standard theory is a source of ambiguity.’® Thus, if a
proper-time theory of weak interactions can be success-
fully implemented, we would expect this formal
difficulty of the standard theory to be removed. It is
also an advantage that the representations supporting
discrete operations can be exhaustingly studied from a
group-theoretical point of view. Secondly, it would be
of interest to study in detail the Poincaré content of
the mixed and infinite-dimensional representations as
was done here for unique spin, in particular spin %.
One would like to set up a second quantized theory
with a proper-time dynamics. Our work along these
lines so far indicates that one may proceed in an almost
identical fashion as with standard field theory by
replacing time with proper time and the three-position
by four-position. One begins by equating the anticom-
mutation rules in momentum space between creation
and annihilation fermion operators for the one-particle
states to the invariant scalar product for one-particle
states. The local field operators may be expressed in
terms of the momentum-space operators, as in the
Appendix, for one-particle states. Evaluation of the
local commutators (at equal proper times) gives a

generalization of the standard local Dirac commutator

due to the inclusion of all physically acceptable masses
in the local fields. The invariant Hamiltonian propagates
each massive particle in terms of its own proper time.

H may be constructed as in Sec. IV for weak or
electromagnetic intéractions. Since there is a continuum
of masses available mathematically, additional restric-
tions must be imposed to keep one within the framework
of physically observable masses. This may be done by
allowing in-states composed only of observed masses.
and by restricting the local fields which form the
interaction to be composed in momentum space of only
allowable masses. This keeps the transitions to out-
states physical. We are working on an attempt to prove
that the electromagnetic and weak interactions in a
proper-time framework gives the standard theory in
the limit of mass eigenstates. But this problem is
complicated by the fact that in the proper-time theory
there is no operator U (fs,f1) which takes the state from
time # to 2. The proper-time dynamics gives an operator
U(rer:1) which takes one from one proper time to
another hetween wave packets spread out in space-time.
It is only after computation of probabilities and an
integration over proper time that one is able to relate
the state on one spacelike surface to another. The hope
would be that seeing even the same basic theory from
an alternative point of view might suggest either an
improvement in basic structure or in calculational
procedures.

Finally, one can ask, to what extent it is useful to
place all leptons in a single spin-} representation. In
Sec. IV we pointed out that this representation is quite

15 This has been pointed out by T. D. Lee, in (e.g.) Proceedings

of The Second Hawaii Topical Conference in Particle Physics
(Hawaii U. P., Honolulu, 1967).

compatible with the properties of the leptons and with
the formal expressions for the weak and electromagnetic
currents, Furthermore, the classification by the sign
of v+ P gives the correct enumeration of types of leptons
and the use of a single local field to incorporate all
lepton states is formally appealing. This appeal would
be even more satisfying if the program for a proper-time
second-quantized theory can be implemented.

Another somewhat speculative point concerns the
mass spectrum of the Hamiltonian - P. Although none -
of the previous framework has hope of shedding light
on this problem, one could attempt a somewhat
phenomenological approach. It is well known that the
leptons may be given hypercharge and isospin assign-
ments and placed within an SUs-triplet weight diagram.
Although the meaning of such an assignment is not
clear, the mass splittings can be written in terms of a
phenomenological Hamiltonian by assuming certain
transformation properties of the splittings. One can
now ask if the labeling inherent in the ‘space-time”
specification of the states [namely, v- P, #% and e(P%)]
can be used to specify a particle’s location in such a
weight diagram. If instead of 7; and ¥ one considers
the perpendicular axes of charge Q and U-spin compo-
nent Us, then the following identification can be made.
The integrated zeroth component of the electromagnetic
current can be identified as the charge Q =(¢|ne(y: P)v°
|¥). Us may be identified with the zeroth component
of another current, with Us=—3{|[ne(y-P)P|y)
possessing the values —4%, 0, 4% for ¢=, v.,, and p,
respectively. That Q and U have the correct values for -
our previous lepton identification is easily checked in
the rest frame of the particles. The charge axis must
be shifted by an amount proportional to lepton number
to give the correct weight values. However, the lepton
number current appears to take a rather complicated
form. If one first writes the mass splittings in terms of
the internal variables and then converts via the above
relations to “space-time” currents, it might be hoped
that the resulting Hamiltonian would assume a form
which would shed some light on these mass splittings.
A difficulty is that the resulting form of the Hamiltonian
is complicated by the structure of the leptonic current
and so far the splitting which results is not transparent.
We emphasize that the spirit of this conjecture is not
necessarily related in any way to hadrons or strong-
interaction physics. The idea is simply to extract
information about the p-¢ and e-v mass splittings by
analogy with the procedures used with hadron splittings.

APPENDIX

In this Appendix we first show the connection for
spin } between the abstract representation space and
the standard forms for various operators like the Dirac
matrices thereby establishing our notation, We then
exhibit the transformations between the various bases.
In terms of these transformations we can then exhibit
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the solutions to eigenvalue equations which separate
the space into irreducible Poincaré representations and
then discuss the physical interpretation,

The invariants 4, and b, are connected to operaiors
on the spin-} space by the equations

35S, = (S*—R) =be+b2—1=31 ,

%E#ypUS“ySp":S'R: —ib0b1= —%‘Ys N

The latter of these shows for spin % (bo=%, bi=23)

that e(b1)=—14y;. Thus the representation space
|k#,e(by),0) is the +vs;-diagonal representation. The
metric operator thus takes the form

PO(O 1>
77_5(. )1 0 ’

which is recognized to be €(P%+° on the y5-diagonal
basis. It is then straightforward to find 4 by Lorentz
transformation of ¥°:

0 1 ' 0 o
'Yo=< >: ‘Y’=< i > y
10 —at 0

(A1)
(A2)

A3)
1 0
v S =y yi=1e(b1) =i< ) .
0 -1
Certain general formulas which are useful are
Cysy e =2g*, (A4)
S =4ily*v"], (AS)
and
W= 3 Eurped PP = % €urpa M PP (A6)
where
we=S.P (A7)
and '
W=SP-PRR. (A8)

The matrix forms of S,, on the ¥®diagonal representa-
tion are ' ‘

o 1{01 O> o 1(02 0> - 1(03 O>
N0 o/ T 20 e/ T 2\ e

(A9)

fo1 0 fo2 0 /o3 0
R=—3(" ) =4 ) R=~3( ),
0 o 0 o2 0 oy

and the action of the inversions on the spin portion of
the representation

01 0 —12
Iﬂ=70=( >, [t=7075=<. ),
10 i 0

1
Ial= 5=1(
0

(A10)
0
) ) Kc=72can
-1
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where C, represents complex conjugation in the position
basis.

The transformation to the 4° diagonal from the «;-
diagonal representation is achieved by

—__ 1( 1 1)
T -1 1))

giving (with spin $% diagonal in both representations)

1 0 0 o 01
o, oo Do
0 ~1 ~o; 0 10

The transformation from spin (5%) diagonal to helicity
(«") diagonal is achieved by

(A11)

US’-w“(‘YO)
P34-P P 4ip? 0 0
_|p—irr —(p+P) 0 0 _
B 0 0 P34-P PiA-iP |
0 0 PleiP? —(P'+P)

with the 4 diagonal before and after the transforma-
tion. The transformation which, with helicity diagonal,
takes one from the v° diagonal to the v P diagonal is

|P°| +m\1/?
Uy (") =<———>

2m
¢ P

Po+-me(PY)
X ’
g-P

PO4-me(PY)

which results in upper and lower portions which are,
respectively, positive and negative eigenstates of
v-Pe(P%). These transformations equivalently give
the projections of any basis vector on any other basis
vector and the composition of any basis vector in
terms of other basis vectors. For example, the trans-
formation Ugi..wo(y?) gives |wt+)={(P3+P)|S3+)
+ (P*+iP?) | S3—)}, where we have written the eigen-
value = after the respective operator. From this
equation it follows that

P34|P|
[2|P|(|P[4P5) ]

(S| ur+)=

and thus the transformations U are composed of the
projections of one unit basis vector onto another.

By combining these transformations one can write,
for example, the positive-energy, positive-helicity
solution to the Dirac equation (y-P>0) in momentum
space, |mK,y- P+, e(P%+, wd+), in terms of another
representation, say k*, vs, and S®-diagonal basis. This
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TasLE ITI. Poincaré subspaces expressed in the vs- and S*-diagonal bases, with a=|P| /(| P°| +m).
e(v-P) + + + + - - - - 0 0o 0 o
(P9 + + - - + + - - + + - -
e(w?) + - + - + - + - + - + -
Particle e e et et ut ut B u Vu v, v, Yu
1—a 0 ~1-a 0 - 0 1+a 0 0y (09 (1 (O
. 0 —1—u 1—a —1—e 0 —~1+4a 0 1 0 0
Solution 14, 0 1—4 { 0 J {— —a [ 0 J 1—a { 0 [1 OJ {0 M
0 —1+4a 0 —1l~a 0 l1—a 0 ~1—a 0 0 0 1

could be written as

|m, &, v P+, e(PO)+, w'+)
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8m|P|(| P|+P?
x(l— ———) K, ek, (PO, o)
P0+m .

| P|

P
+(Pl+'iP2)(1— —|—|>’m7 k} 75+) E(P0)+) U—>
Po+m
- |P|
+(P3+P)(1+ — }|m, &, y5—, e(PO)+, 0+)
Po4-m »

+(P‘+iP"’)<1+ ;I—I:_—I—)m, k,vs—, 6(P°)+,o—>:] .

C4-m.

Equivalently, if these coefficients are written as
elements of a column vector, then they are immediately
recognized as the positive-energy, positive-helicity
solution to the Dirac equation using the basis %, and
5% diagonal. Thus the matrix elements of the trans-
formation Uyoayop (W) U gt wo{ye®) Uys. 40 (S?) taking one
from the 3%, S basis to the v-P, »° Poincaré basis
constitutes, as column vectors, the solutions to
(v-Pxm)|¢)=0. It is also easily verified that the
mass-zero solutions on the Poincaré basis satisfy
v P|¢)=0 and thus consist of four independent
vectors.

Referring again to the transformation U, ,.p(a?),
one observes that half of this transformation is identical
in form to the Foldy-Wouthuysen transformation,
This can be seen by recalling that U0, ,.r(«’) results in
upper and lower components which are positive and
negative eigenstates, respectively, of y-Pe(P?). Thus
the Dirac solution (y-P>0) with positive P® is the
upper component and with negative P° is the lower
component. By inserting these values for P° into

y-y.p(@?), one gets the Foldy-Wouthuysen trans-
formation apart from an over-all normalization
(|Po|/m)"2, That Uyoq.p(w®) is a more general
transformation arises from the fact that the opposite
sign choices for PP results in a transformation to the
negative v+ P subspace with both positive and negative

energies.

Since the form of the metric,

0
-1/’
is preserved by this transformation U,e.,.p{w?), it
follows that it can be cast into the form of a Lorentz

transformation on the two-dimensional space |y94)
(ignoring the helicity variable), i.e.,
coshid sinh%ﬂ)
(sinh%ﬁ cosh38 ’
where tanh@="V/c=P/P",

We now write out explicitly in Table III the form of
the Poincaré basis when expressed in terms. of the ~®-
and S%-diagonal basis for the simple case of P=(0,0,P).
As discussed above, the ¥+ P >0 portion constitutes the
solution to the Dirac equation. Identifications of the
leptons with - this solution is shown along with the
eigenvalues of the Poincaré covariants. For simplicity
we define a= |P| /(| P°| +m). As previously discussed,
the form of the electromagnetic current suggests the
identification of y~ with the negative-energy, negative-
v+P subspace. In order to construct the correct
helicity projections for muon-muon-neutrino leptonic
currents, one is forced to use the opposite, 14iv;
neutrino projections for the muon neutrino as can be
seen from Table III by inspection. This restriction
then fixes the neutrino projections as shown.

Note added in proof. The group Gs proposed by
Aghassi ef at.% is the group generated by the algebra ob-
tained by adding a mass-squared operator .S to our
XPM algebra. As they show, the representations corre-
sponding to different “internal” portions of the mass-
squared operator are equivalent. Consequently, the
representations which they obtain are the same as the
infinite spin representations which we obtained in I.
We agree with the criticism of Noga that a shortcoming
of their framework is that they only have infinite spin
representations. However, this inadequacy is a conse-
quence of requiring that the homogeneous Lorentz
representations be unitary and not merely a consequence
of the commutation rule. We are considering both uni-
tary and nonunitary homogeneous Lorentz representa-
tions, thus admitting unique, mixed, and infinite spin
representations. The second criticism by Noga correctly

O(PO) +1
e _< 0

S ————
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points out that G5 transforms physical mass states into  position operator X*. This problem may be avoided if
unphysical (imaginary mass) states. These transforma- ‘one considers the XPM algebra as an algebra of ob-
tions (discussed in I) are generated by the covarient servables rather than the group which it generates.




